Lomeutec - Tutoriais e Informação
ESTE BLOG NÃO É MAIS ATUALIZADO. SUAS ATIVIDADES FORAM DEFINITIVAMENTE ENCERRADAS EM 2020.

Progressões Aritméticas - Parte II

As progressões são sequências numéricas com propriedades matemáticas. Isso já foi dito na Parte I dessa publicação. O que será visto agora é a relação entre dois termos de uma PA e como resolver problemas relacionados a este tema. Como sempre, esse tópico será abordado e apresentado em forma de exercícios resolvidos e uma prática no final.

Ir para o índice

Concurseiro

Consideremos dois termos de uma mesma PA, como por exemplo a5 e a8. Suas posições são dadas pelos índices 5 e 8. Um é o quinto termo e o outro é o oitavo termo. A diferença entre esses índices é 3, pois a5 está 3 posições atrás de a8 .

Numa PA, a diferença entre dois termos consecutivos é igual  a razão. Um exercício envolvendo esse raciocínio foi apresentado na publicação anterior.

No exemplo atual, a diferença entre o termo mais avançado e o outro é de 3 razões, ou 3d.

a8 - a5 = 3d

Fórmula da relação entre dois termos de uma PA

an - am = (n - m)d

Exemplo

Relacione dois termos de uma PA, considerando que um seja o segundo termo e o outro o décimo termo.

O enunciado diz que devemos trabalhar com dois termos dessa PA, a2 e a10 .

As variáveis da fórmula são:

an, am, n, m, d

Onde:

an = a10
am = a2
n = 10
m = 2

Ficando assim:

a10 - a2 = (10 - 2)d

Ou seja:

a10 - a2 = 8d

Desse jeito conseguimos relacionar o segundo ao décimo termo da PA.

________________________________________

Exemplo

O sexto termo de uma PA é 70 e o décimo é 114. Qual a razão da PA?

Sabemos que:

a6 = 70
a10 = 114

Então substituímos na fórmula.

an - am = (n - m)d

a10 - a6 = (10 - 6)d
a10 - a6 = 4d

Obtivemos outra fórmula.

 a10 - a6 = 4d

É só substituir pelos valores que conhecemos.

a10 - a6 = 4d
144 - 70 = 4d
44 = 4d

d = 44/4
d = 11


Resposta:

A razão dessa PA é 11.

________________________________________

Exemplo

Numa PA, o 13º termo é 29 e o 25º termo é 53. Calcule o valor do terceiro termo da PA.

Os dados que temos são:

a13 = 29
a25 = 53
a3 = ?
d = ?

Não sabemos qual é a razão. Vamos encontrá-la primeiro relacionando os termos dados.

an - am = (n - m)d

a25 - a13 = (25 - 13)d
a25 - a13 = 12d

Vamos substituir os valores pelos que já conhecemos:

a25 - a13 = 12d

53 - 29 = 12d
24 = 12d
d = 2412
d = 2

Agora que já sabemos que a razão dessa PA é 2, vamos relacionar um dos termos conhecidos, a13 ou a25 com o termo que procuramos, que no caso é a3.

an - am = (n - m)d

a13 - a3 = (13 - 3)d
a13 - a3 = 10d

29 - a3 = 10*2
29 - a3 = 20
29 - 20 = a3
9 = a3

Achamos a3 relacionando com o 13º termo dessa PA. Se fizéssemos com o 25º termo encontraríamos a resposta também. Veja:

an - am = (n - m)d

a25 - a3 = (25 - 3)d
a25 - a3 = 22d

53 - a3 = 22*2
53 - a3 =44
53 - 44 = a3
9 = a3

Resposta:

O 13º termo dessa PA é 9.

 ________________________________________

Por enquanto faça os exercícios abaixo. A próxima publicação será sobre PG e mais tarde voltaremos a ver mais exemplos com exercícios de PA para destrinchar esse assunto de uma vez.

 Exercícios

1) O primeiro termo de uma PA é 2 e o quinto é 16. Calcule a Razão dessa PA e escreva seus 5 primeiros termos.

 ________________________________________

2) O terceiro termo de uma PA é 22 e o oitavo é 52. Calcule o vigésimo termo.

 ________________________________________

3) Num certo país, o primeiro presidente iniciou o seu mandato em 1870 e governou por 6 anos assim como seus sucessores. Em qual governo encontra-se atualmente esse país?

________________________________________

________________________________________

Respostas

Exercício 1

Vamos separar os dados que o enunciado nos deu:

a1 = 2
a5 = 16
d = ?

A primeira coisa pedida é que se calcule a razão.

an - am = (n - m)d

a5 - a1 = (5 - 1)d
a5 - a1 = 4d
16 - 2 = 4d
14 = 4d
d = 14/4
d = 3,5

A razão dessa PA é 3,5. Agora ficou fácil escrever os 5 primeiros termos.

a1 + d = a2
2 + 3,5 = a2
5,5 = a2

a2 + d = a3
5,5 + 3,5 = a3
9 = a3

a3 + d = a4
9 + 3,5 = a4
12,5 = a4

Resposta:

A razão dessa PA é 3,5 e seus 5 primeiros termos são: 2; 5,5; 9; 12,5 e 16.

 ________________________________________

Exercício 2

A primeira coisa é sempre separar os dados que o enunciado dá para podermos organizar as idéias.

a3 = 22
a8 = 52
a20 = ?
d = ?

Vamos relacionar os termos conhecidos para acharmos a Razão da PA.

an - am = (n - m)d

a8 - a3 = (8 - 3)d
a8 - a3  = 5d
52 - 22 = 5d
30 = 5d
d = 30/5
d = 6

Agora que já sabemos que a razão dessa PA é 6, vamos relacionar um dos termos conhecidos, a3 ou a8 com o termo que procuramos, que no caso é a20.

an - am = (n - m)d

a20 - a3 = (20 - 3)d
a20 - a3 = 17d
a20 - 22 = 17*6
a20 - 22 = 102
a20 = 102 + 22
a20 = 124

Não é necessário fazer com a8, nós já achamos a resposta. No entanto eu farei como exemplo de que o resultado será o mesmo.

an - am = (n - m)d

a20 - a8 = (20 - 8)d
a20 - a8 = 12d

a20 - 52 = 12*6
a20 - 52 =72
a20 = 72 + 52
a20 = 124

Resposta:

O vigésimo termo dessa PA é 124.

 ________________________________________

Exercício 3

Vamos analisar o enunciado:

"o primeiro presidente iniciou o seu mandato em 1870"

Isso quer dizer que:

a1 = 1870

"governou por 6 anos assim como seus sucessores"

d = 6

Pois há mudança de governante a cada 6 anos.

"Em qual governo encontra-se atualmente esse país?"

Bom, nesse caso responderei com base no ano em que foi feita essa publicação, ou seja, 2011.

an = 2011

Porque an = 2011? Lembra da publicação anterior sobre PA? Lá eu mostro a fórmula do Termo Geral em que "an" representa o último termo de uma PA.

É essa fórmula que iremos usar.

an = a1 + (n – 1) . r

Lembre-se de que r ou d representam a Razão em uma PA.

2011 = 1870 + (n - 1).6
2011 - 1870 = (n - 1).6
141 = (n - 1).6
141 = 6n - 6
141 + 6 = 6n
147 = 6n
n = 148/6
n = 24,5

Esse país encontra-se atualmente em meio ao mandato do 24º presidente.

Resposta:

Encontra-se no 24º governo.

________________________________________

Nilton (LOMEUTEC)
É formado como técnico em informática com ênfase em análise de sistemas e programação comercial. No entanto gosta mesmo é de fazer publicações para o blog lomeutec.blogspot.com onde compartilha grande parte do pouco conhecimento autodidata que adquire através de experiências, estudos diários e até mesmo de tudo aquilo que descobre enquanto navega despreocupadamente pela internet em seus momentos de ócio. Aqui no LTI acumula funções de publicador, moderador, editor, administrador e o que mais for possível e necessário.